Tetrahedron Letters No. 38, pp 3401 - 3404, 1974. Pergamon Press. Printed in Great Britain.

AVAROL, A NOVEL SESQUITERPENOID HYDROQUINONE WITH A REARRANGED DRIMANE SKELETON FROM THE SPONGE DISIDEA AVARA

L. Minale; R. Riccio and G. Sodano

Laboratorio per la Chimica delle molecole di interesse biologico del C.N.R. via Toiano 2, Arco Felice, Napoli, Italy

(Received in UK 1 August 1974; accepted for publication 9 August 1974)

Marine sponges were previously shown to be sources of compounds of mixed biogenesis originating partly from mevalonate and partly from a benzenoid precursor. 2-Polyprenylbenzoquinones and the corresponding quinols were found in <u>Ircinia</u> sp.¹, while <u>Halichondria panicea</u>² yielded a group of C₂₁ hydroquinones, the paniceins², including in their structures an aromatic sesquiterpenoid moiety.

We have now isolated from solvent extracts of the sponge <u>Disidea avara</u> a further C_{21} hydroquinone, avarol (<u>1</u>; 6% dry weigth), possessing a rearranged drimane skeleton, accompained by minor amounts of the corresponding quinone, avarone (<u>2</u>; 0.8%).

Avarol (<u>1</u>), m.p. 148-150° (CHCl₃), $[\alpha]_{\rm D}$ +6.1°, M⁺ 314.2243 (calcd. 314.2245), C₂₁H₃₀O₂, was recognized as a monosubstituted hydroquinone by u.v. ($\lambda_{\rm max}$ 298 nm, ϵ 3900), n.m.r. (three aromatic protons at δ 6.62 as a complex band) and its eventual conversion on Ag₂O oxidation to the corresponding quinone, oil, $\lambda_{\rm max}$ 246, 315 and 440 (ϵ 12300; 750; 30), $\nu_{\rm max}$ 2920, 1660 and 1600 cm⁻¹, which was identical to avarone (2). Avarol (1) contains two tertiary methyls (δ 0.84 and 1.02 p.p.m.), one secondary methyl (δ 1.00, J 6 Hz), one vinyl methyl (δ 1.50), a benzylic methylene linked to a quaternary carbon atom (AB quartet at δ 2.64, J 14 Hz) and an olefinic hydrogen (δ 5.09, m). It formed a diacetate (3), m.p. 91-93°, M⁺398, a dimethyl ether (4; dimethylsulfate-NaOH), m.p. 80-81°, M⁺ 342 and, on hydrogenation on Pd-C at room temp. and pressure, gave a dihydroderivative, m.p. 151-153°, M⁺ 316. The diacetate 3 on hydroboration-oxidation gave a ketone, m.p. 201-213°, M⁺ 414, whose i.r. at 1706 cm⁻¹ placed the ketonic group in a six-membered ring.

Osmilation of the dimethyl ether <u>4</u> and cleavage with lead tetraacetate of the diol <u>5</u> (possibly a single diastereoisomer, m.p. 138-140°, $[\alpha]_D$ -15.7°, M⁺ 376) gave the ketoaldehyde <u>7</u>, oil, $[\alpha]_D$ -54°, M⁺ 374, ν_{max} 2710, 1725 and 1695 cm⁻¹, δ CH=0 9.66.

Selective hydrogenation (CH₃CO₂H, 5% Pt-C, room temp. and pressure, 18 h) of the aldehyde group afforded the oily hydroxyketone 8, M⁺ 376, v_{max} 3600-3300 cm⁻¹, the base-catalyzed deuteration of which lead to the exchange of three protons, thus indicating the quaternary nature of the carbon attached to the methylketone grouping. The ketoaldehyde 7 was cyclized (dry benzene/CH₃CO₂H/piperidine, 60°, 1 h) to the cyclopentenaldehyde 9, oil, [α]_D -186.5°, λ_{max} 225, 256, 291 (ϵ 8760, 10340, 3670) nm, v_{max} 2700, 1660 cm⁻¹, M⁺ 356, in the n.m.r. spectrum of which an AB portion of an ABX system [double-doublet of one proton at δ 2.80 with J of 13 Hz and 6 Hz and a broadened triplet one proton at δ 2.18 with J of 13 Hz, converted into an AB quartet with J of 13 Hz on irradiation at δ 1.60] was assigned to protons in position 1 and confirmed that C-10 is tertiary and C-5 quaternary. A study of Eu(fod)₃ induced shifts of the methyl resonances of the diol <u>6</u>, m.p. 118-120°, M⁺ 432, confirmed the presence at C-5 of a tertiary methyl. Addition of 0.1-0.4 moles of Eu(fod)₃ per mole of <u>6</u> caused downfield shifts, which were approximatively linear with respect to concentration of Eu(fod)₃. The largest shift was observed, of course, for the CH₃-C-OH protons; the next biggest shift is that of one <u>tert-Me</u> (C-5 Me); the Ar-<u>CH₂</u> protons move about the same p.p.m. as the second <u>tert-Me</u> (C-9 Me), while the <u>sec-Me</u> is more slightly shifted. Dehydrogenation with 10% Pd-C (270°, 18 h) of avarol (<u>1</u>) afforded 1,2,5,6tetramethylnaftalene and 1,2,5-trimethylnaftalene, isolated by g.l.c. and identified by comparison with authetics^{3,4}, along with major amounts of the tetralin <u>10</u>, M⁺ 188, λ_{max} 220, 266, 273 (e 4550, 516, 446) nm, & 6.98 (2H, ABq, J 8Hz, Ar-H) 2.62 (2H, t, J 6 Hz, Ar-<u>CH₂</u>), 2.20 (3H, s, Ar-<u>CH₃</u>), 2.09 (3H, s, Ar-<u>CH₃</u>), 1.70 (4H, m, CH₂), 1.24 (6H, s, <u>tert-Me's</u>) p.p.m.. The formation of the tetralin 10 on dehydrogenation of avarol (1) no doubt results from methyl group mi-

This results together with the evidence given above requires that avarol have the constitution 1. In confirmation, treatment of dimethylether 4 with acid $(CH_3CO_2H-HCl conc., 4:1, room temp., 6 h)$, gave, in a quantitative yield, the tetrasubstituted olefin 11, m.p. 58-60°, M⁺ 342, which showed three tert-Me's and one secondary at δ 1.00 (6H, s), 0.90 (3H, s) and δ 0.76 (3H, d, J 6Hz) and significantly no olefinic proton signals; the $Ar-CH_2$ protons resonate as ABq (J 14 Hz) at δ 2.62 and integration of the appropriate region (δ 2.2-1.8) demonstrate that there are four allylic protons, thus confirming the quaternary nature of C-9 in avarol (1). In addition the doublet at δ 0.76 (sec-Me) was transformed into a singlet on irradiation at δ 1.60. Analogous acid-catalyzed rearrangements have been already encountered in friedel-3-ene⁶ and in some diterpenoids⁷.

gration from C-5 to C-4 in view of the position of the double bond⁵.

Avarol $(\underline{1})$ represent the first sesquiterpenoid with a rearranged drimane skeleton although a closely related structure has been proposed for Kamalone and Kamalol, sesquiterpenoid coumarins of <u>Ferula penninervis</u>, on applying the principles of the biogenetic theory⁸.

Avarol $(\underline{1})$ can be conceived as derivable from farmesylpyrophosfate by cyclization to an intermediate cation $(\underline{12})$ involving drimane skeleton, followed by a 'friedo' rearrangment and finally deprotonation. Interestingly, two C-21 hydroquinones, zonarol $(\underline{13})$ and isozonarol, with a drimane skeleton have been recently described from a brown seaweed⁹. The stereochemistry of avarol (1) is now under examination.

TABLE 1.- N.m.r. data on the diol <u>6</u> before and after addition of the europium shift reagent Eu (fod-dg)3.

Signal identification	δ (CDCl ₃) ^a	6 (Eu-CDCl3) ^b	Δ6
СН3-С-ОН	1.09	7.38	6.29
CH3 at C-5	0.95	3.60	2.65
ArCH 2	2.52	3.76	1.24
CH3 at C-9	0.81	2.10	1.29
CH3 at C-8	0.96	1.76	0.80

(a) relative to TMS in the absence of Eu (fod)3.

(b) relative to TMS after the addition of 0.4 moles of $Eu(fod)_3$ per mole of 6.

REFERENCES

- 1) G. Cimino, S. De Stefano and L. Minale. <u>Tetrahedron</u>, <u>28</u>, 1315 (1972); <u>Experientia</u>, <u>28</u>, 1401 (1972).
- 2) G. Cimino, S. De Stefano and L. Minale. Tetrahedron, 29, 2565 (1973).
- 3) L. Ruzicka and J. R. Hosking. <u>Helv. Chim. Acta</u>, 1402 (1930).
- 4) F. S. Spring and T. Vickerstaff. J. Chem. Soc., 249 (1937).
- 5) J. F. King and P. de Mayo. Molecular Rearrangements, vol. II, p. 172 (ed. by P. de Mayo), John Wiley & Sons (1964).
- 6) J. L. Courteney, R. M. Goscoigne and A. Z. Zummer. <u>Chem. & Ind.</u> (London), 1479 (1956); <u>J. Chem. Soc.</u> (London), 881 (1958); see also V. V. Kane and R. Stevenson. <u>Chem. & Ind.</u> (London), 1243 (1960).
- 7) J. D. Connolly, R. Mc Crindle, R. D. H. Murray, A. J. Renfrew, K. H. Overton and A. Melera. <u>J. Chem. Soc.</u> (C), 268 (1966).
- 8) S. K. Paknikar and J. K. Kirtany. Experientia, 30, 224 (1974).
- 9) W. Fenical, J. J. Sims, D. Squatrito, R. H. Wing and P. Radlick. <u>J. Org. Chem</u>, <u>38</u>, 2383 (1973).